Better Proposal Distributions: Object Tracking Using Unscented Particle Filter
نویسندگان
چکیده
Tracking objects involves the modeling of non-linear nonGaussian systems. On one hand, variants of Kalman filters are limited by their Gaussian assumptions. On the other hand, conventional particle filter, e.g., CONDENSATION, uses transition prior as the proposal distribution. The transition prior does not take into account current observation data, and many particles can therefore be wasted in low likelihood area. To overcome these difficulties, unscented particle filter (UPF) has recently been proposed in the field of filtering theory. In this paper, we introduce the UPF framework into audio and visual tracking. The UPF uses the unscented Kalman filter to generate sophisticated proposal distributions that seamlessly integrate the current observation, thus greatly improving the tracking performance. To evaluate the efficacy of the UPF framework, we apply it in two real-world tracking applications. One is the audio-based speaker localization, and the other is the visionbased human tracking. The experimental results are compared against those of the widely used CONDENSATION approach and have demonstrated superior tracking performance.
منابع مشابه
Enhanced Importance Sampling: Unscented Auxiliary Particle Filtering for Visual Tracking
The particle filter has attracted considerable attention in visual tracking due to its relaxation of the linear and Gaussian restrictions in the state space model. It is thus more flexible than the Kalman filter. However, the conventional particle filter uses system transition as the proposal distribution, leading to poor sampling efficiency and poor performance in visual tracking. It is not a ...
متن کاملA New Modified Particle Filter With Application in Target Tracking
The particle filter (PF) is a novel technique that has sufficiently good estimation results for the nonlinear/non-Gaussian systems. However, PF is inconsistent that caused mainly by loss of particle diversity in resampling step and unknown a priori knowledge of the noise statistics. This paper introduces a new modified particle filter called adaptive unscented particle filter (AUPF) to overcome th...
متن کاملUnscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملDoppler and bearing tracking using fuzzy adaptive unscented Kalman filter
The topic of Doppler and Bearing Tracking (DBT) problem is to achieve a target trajectory using the Doppler and Bearing measurements. The difficulty of DBT problem comes from the nonlinearity terms exposed in the measurement equations. Several techniques were studied to deal with this topic, such as the unscented Kalman filter. Nevertheless, the performance of the filter depends directly on the...
متن کاملTracking Moving Object via Unscented Particle Filter in Sensor Network
Moving object tracking is one of the typical applications in wireless sensor network (WSN). As a result, a lot of important solutions have been proposed in the last decade, toward addressing different aspects of object tracking in WSN settings. This work describes an Unscented particle filter (UPF) based Moving Object Tracking algorithm, UMOT, in WSN settings, where the sensor nodes are cluster...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001